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* Types of Curves
— Splines
— B-splines
— NURBS

* Knot sequences

» Effects of the weights



Splines N

* Popularized in late 1960s Iin

US Auto industry (GM)
— R. Riesenfeld (1972)
— W. Gordon

 Origin: the thin wood or —

metal strips used in
building/ship construction
« (Goal: define a curve as a set of piecewise

simple polynomial functions connected
together



Natural Splines

Mathematical representation of physical
splines
C2 continuous

Interpolate all control
points

Have Global control
(no local control)




B-splines: Basic ldeas

« Similar to Bézier curves
— Smooth blending function times control points

 But:

— Blending functions are non-zero over only a
small part of the parameter range
(giving us local support)

— When nonzero, they are the “concatenation”
of smooth polynomials. (They are piecewise!)
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B-spline: Benefits

» User defines degree
— Independent of the number of control points

* Produces a single piecewise curve of a
particular degree

— No need to stitch together separate curves
at junction points

« Continuity comes for free



B-splines

* Defined similarly to Bézier curves
— p; are the control points

— Computed with basis functions (Basis-splines)
« B-spline basis functions are blending functions

— Each point on the curve is defined by the
blending of the control points
(B, is the i-th B-spline blending function)

p(t) = i Bi,d (1) p;

— B is zero for most values of t! ,



B-splines:
Cox-deBoor Recursion

« Cox-deBoor Algorithm: defines the blending
functions for spline curves (not limited to deg 3)
— curves are weighted avgs of lower degree curves

* Let B, ,(r) denote the /-th blending function for a
B-spline of degree d, then:

I, if¢, <st<t,,
Bk,O (t) = :
0, otherwise
[ —t Log —1
Bk,d (1) = - Bk,d—l (1) + e Bk+1,d—1 (¢)
liva — U livasr s 8



B-spline Blending Functions

B, (1) is a step function that is 1 in the [uk7 Urt1 )
’ interval \, l

B, (1) spans two intervals and is a o

piecewise linear function that goes o

from 0 to 1 (and back) — L By

B, ,(t) spans three intervals and is a oA

piecewise quadratic that grows B

from O to 1/4, then up to 3/4 in the 0l

middle of the second interval, back

to 1/4, and back to 0 By,
B, (%) is a cubic that spans four intervals

growing from 0 to 1/6 to 2/3, then B,

back to 1/6 and to 0

B-spline blending functions
9

Pics/Math courtesy of Dave Mount @ UMD-CP



B-spline Blending Functions:
Example for 2"d Degree Splines

* Note: can't define a
polynomial with these
properties (both 0 and
non-zero for ranges)

. Idea: subdivide the b w we us
parameter space into
intervals and build a A Bolw
piecewise polynomial _L B(u)

— Each interval gets different —/¥ .
polynomial function r ()
k Bs(u)

Pics/Math courtesy of Dave Mount @ UMD-CP




B-spline Blending Functions:
Example for 39 Degree Splines

C « Observe:
4 p(t) = E Bz’,d (t)pi .
= — at t=0 and t=1 just

four of the functions
are non-zero

— all are >=0 and sum
to 1, hence the
convex hull property
holds for each curve
segment of a
B-spline

Ol wolrao oo
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B-splines: Knot Selection

 Instead of working with the parameter
spacel=t=<l1, usel,, =i, <t <t,.<t, =1l
 The knot points I

— joint points between
curve segments, Q,

— Each has a
knot value
I P5
— m-1 knots for ¢ A ® Knot
Po P, 4 Control point

m+1 points > x(0)
12
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Uniform B-splines:
Setting the Options

« Specified by

—m=3
— m+1 control points, P, ... P_

— m-2 cubic polynomial curve segments, Q;...Q,,
— m-1 knot points, t, ... t_,,

— segments Q) of the B-spline curve are

« defined over a knot interval [¢,,7,,, ]
+ defined by 4 of the control points, P, ;... P,

— segments Q; of the B-spline curve are blended
together into smooth transitions via
(the new & improved) blending functions
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Example: Creating a B-spline

m=9

« 10 control points
* 8 knot points

7/ segments

()= B (0)p,

€ Control point

I P
¢ . > ® Knot
PO P,

> x(f)
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B-spline: Knot Sequences

« Even distribution of knots
— uniform B-splines
— Curve does not interpolate end points
« first blending function not equal to 1 at t=0
« Uneven distribution of knots
— non-uniform B-splines

— Allows us to tie down the endpoints by repeating knot values
(in Cox-deBoor, 0/0=0)

— If a knot value is repeated, it increases the effect (weight) of the
blending function at that point

— If knot is repeated d times, blending function converges to 1 and
the curve interpolates the control point

ol—m,oohvoOwWwold o lbholo
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B-splines:
Cox-deBoor Recursion

« Cox-deBoor Algorithm: defines the blending functions for
spline curves (not limited to deg 3)
— curves are weighted avgs of lower degree curves

* Let B, ,(t)denote the i-th blending function for a B-spline
of degree d, then:

I, if¢, <st<t,,
Bk,O (t) = :
0, otherwise
t—t te o —t
B, ,(1) = : B, () + e B, 4.(0)
Lieva — U Uivast ~ Ui 17



Creating a Non-Uniform
B-spline: Knot Selection

« Given curve of degree d=3, with m+1 control
points Po;---:Pm
— first, create m+d knot values
— use knot values (0,0,0,1,2,..., m-2, m-1,m-1,m-1)
(adding two extra 0's and m-1's)
— Note

« Causes Cox-deBoor to give
added weight in blending to the . d
first and last points when tis °

neart .andt__,

Pics/Math courtesy of G. Farin @ ASU



B-splines: Multiple Knots

* Knot Vector )
{0.0, 0.0, 0.0, 8.0, 4.0, 5.0, 6.0, 7.0} N

« Several consecutive

knots get the same
value

« Changes the basis
functions!
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P=2B.0r  B_gpline Summary

By, I, ift, st<t,,
Bk,() (t) = .
0, otherwise
By,
t-1, lyvan —1
B Bk,d ()= Bk,d—l () + 1 Bk+1,d—1 (¢)
02 liva — e k+d+1 ~ b4l
B
1) 0
A
6L
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2 dd ds
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Watching Effects |- C%

of Knot Selection |
+ 9 knot points (initially) | N\

000123456789

— Note: knots are distributed
parametrically based on ft,
hence why they “move” 3

¢ 10 COntrO| points 000112233444

* Curves have as many —
segments as they have |
non-zero intervals in u  degree of 00000333355555
curve ?\—
RN

000000000 555555555
Pics/Math courtesy of G. Farin @ ASU




B-splines: Local Control Property

 Local Control

P”46urve

Py — polynomial coefficients
¢ P, Curve depe.nd on a few Pomts
— moving control point (P,)

P, Curve affects only local curve

P Ps — Why: Based on curve

¢ defn, affected region
/ extends at most 2 knot

. /7 Q points away
s 07\"D6 ® Knot

¢ Control point 29

» x(t)

1994 Foley/VanDam/Finer/Huges/Phillips ICG



B-splines: Local Control Property
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Recorded from: http://heim.ifi.uio.no/~trondbre/OsloAlgApp.html



B-splines: Convex Hull Property

* The effect of multiple control points on a
uniform B-spline curve

Q, Convex hull
Q, Convex hull ————-

P,=P,=P,
(c)

25
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B-splines: Continuity

» Derivatives are easy for cubics
3

p(u) = ;) u'c,

 Derivative:

p'(w)=c, +2cu+3cu’

Easy to show C9, C7, C?
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B-splines: Setting the Options

 How to space the knot points?

— Uniform
« equal spacing of knots along the curve

— Non-Uniform

* Which type of parametric function”

— Rational
« x(t), y(t), z(t) defined as ratio of cubic polynomials

— Non-Rational
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NURBS

At the core of several
modern CAD systems
— |-DEAS, Pro/E, Alpha_1
Describes analytic and
freeform shapes

Accurate and efficient
evaluation algorithms

Invariant under affine and
perspective transformations

U of Utah, Alpha_1



Benefits of
Rational Spline Curves

* |nvariant under rotation, scale, translation,
perspective transformations

— transform just the control points,
then regenerate the curve

— (non-rationals only invariant under rotation, scale
and translation)

« Can precisely define the conic sections and
other analytic functions

— conics require quadratic polynomials
— conics only approximate with non-rationals
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NURBS

Non-uniform Rational B-splines: NURBS

* Basic idea: four dimensional non-uniform B-splines,
followed by normalization via homogeneous coordinates
— If P;is [x, y, z, 1], results are invariant wrt perspective projection

« Also, recall in Cox-deBoor, knot spacing is arbitrary

— knots are close together,
influence of some control points increases

— Duplicate knots can cause points to interpolate
— e.g.Knots ={0, 0, 0, 0, 1, 1, 1, 1} create a Bézier curve
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Rational Functions

* Cubic curve segments
_XO YO 20
x(1) = W) y(?) W) z(?) 0
where X (), Y(1), Z(2), W(¢)
are all cubic polynomials with control
points specified in homogenous

coordinates, [x,y,z,w]
* Note: for 2D case, Z(¢) =0
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Rational Functions: Example

 Example:
— rational function: a ratio of polynomials .
: : : 1 —u
— a rational parameterization xu) = 12
in u of a unit circle in xy-plane: W o= 2
A G
o _ z(u) = 0
— a unit circle in 3D homogeneous
coordinates: xu) = 1-4°

y(u) = 2u
z(u) = 0
) = 1+u 32

wl\u



NURBS: Notation Alert

* Depending on the source/reference
— Blending functions are either B, ,(u) or N, ,(u)
— Parameter variable is either u or ¢
— Curve is either Cor Por Q
— Control Points are either P, or B,

— Variables for order, degree, number of control
points etc are frustratingly inconsistent

K, I,,m n,p, L, d, ...

33



1.

NURBS: Notation Alert

If defined using homogenous
coordinates, the 4th (3rd for 2D)
dimension of each P, is the weight

If defined as weighted euclidian, a
separate constant w;,, is defined for
each control point

34



NURBS

* A d-th degree NURBS curve C is def'd as:

n-1
E_ w.B. ()P
Cl = gt 2
w,B; ,(u)

Where =
— control points, £,
— d-th degree B-spline blending functions, B, , ()

— the weight, w, for control point P,
(when all w=1, we have a B-spline curve)



Observe: Weights Induce New
Rational Basis Functions, R

» Setting: B
g Ri(lxl)— _‘;VZBld(u)

2 zd(”

Allows us to write: C(u)= ERM ()P
=0

Where R, ,(u) are rational basis functions

— piecewise rational basis functions on u &|0,1]
— weights are incorporated into the basis fctng



Geometric Interpretation of
NURBS

With Homogeneous coordinates, a rational n-
D curve is represented by polynomial curve in
(n+1)-D

Homogeneous 3D control points are written
as: PY = w;x;, wiys;, wizi, W;

in 4D where w # 0

To get FP;, divide by w;

— a perspective transform with center at the origin

Note: weights can allow final curve shape to
go outside the convex hull (i.e. negative w)



0.8 L

0.6 L

0.4 |

0.2 L

Unif. Knot Vector

Ny (1)

N, (1)

NURBS: Examples

N, (1)

N, (1)

N, ()

1

2

3

4

5

6

. Non-UnifN. Knot Vector

S0 N,

N, L (1)

0,3(

0.8 L

0.6 L

0.4 L

0.2 L

{0.0,1.0,2.0,3.75. 4.0, 4.25, 6.0, 7.0}

1

N =
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NURBS: Examples

Knot Vector
{0.0, 0.0, 0.0, 8.0, 4.0, 5.0, 6.0, 7.0}

Several consecutive

knots get the same
value

Bunches up the curve
and forces it to
Interpolate

B0
39
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NURBS: Examples

« Knot Vector
{0.0, 1.0, 2.0, 3.0, 3.0, 5.0, 6.0, 7.0}

« Several consecutive

knots get the same
value

 Bunches up the curve
and forces it to
Interpolate

« Can be done midcurve
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The Effects of the Weights

w; of P, effects only the range [u, u..,.4)
If w=0 then P, does not contribute to C

If w; increases, point B and curve C are pulled
toward P; and pushed away from P,

If w; decreases, point B and curve C are
pushed away from P; and pulled toward P,

If w; approaches infinity then iy -»
B approaches 1

|

R

oy
0



The Effects of the Weights

* |Increased weight
pulls the curve
toward B, .

42
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Programming assignment 3

Input PostScript-like file containing polygons
Output B/W XPM

Implement viewports

Use Sutherland-Hodgman intersection for
polygon clipping

Implement scanline polygon filling. (You
cannot use flood filling)
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