
On-Line Computer Graphics Notes

QUATERNIONS

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

The quaternion number system was discovered by Hamilton, a physicist who was looking for an exten-

sion of the complex number system to use in geometric optics. Quaternions have developed a wide-spread

use in computer graphics and robotics research because they can be used to control rotations in three dimen-

sional space. In these notes we define and review the basic properties of quaternions.

What are Quaternions?

Remember complex numbers? These numbers are an extension of the real number system and can be

written in the forma + bı, wherea andb are both real numbers andı2 = −1. The quaternions are just an

extension of this complex number form.

A quaternion is usually written as

q = a + bi + cj + dk

wherea, b, andc are scalar values, andi, j andk are the unique quaternions with the properties that

i2 = −1, j2 = −1, k2 = −1

and



ij = k,

jk = i,

ki = j

ji = −k,

kj = −i,

ik = −j

This is clearly an extension of the complex number system – where the complex numbers are those

quaternions that havec = d = 0 and the real numbers are those that haveb = c = d = 0.

Adding and Multiplying Quaternions

Addition of quaternions is very straightforward: We just add the coefficients. That is, ifq1 = a1 + b1i+

c1j + d1k andq2 = a2 + b2i + c2j + d2k, then the sum of the two quaternions is

q1 + q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k

Multiplication is somewhat more complicated, as we must first multiply componentwise, and then use

the product formulas fori, j, andk to simplify the resulting expression. So the product ofq1 andq2 is

q1q2 = (a1 + b1i + c1j + d1k) (a2 + b2i + c2j + d2k)

= a1a2 + a1b2i + a1c2j + a1d2k + b1a2i + b1b2ii + b1c2ij + b1d2ik

+ c1a2j + c1b2ji + c1c2jj + c1d2jk + d1a2k + d1b2ki + d1c2kj + d1d2kk

= (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + a2b1 + c1d2 − d1c2) i

+ (a1c2 + a2c1 + d1b2 − b1d2) j + (a1d2 + a2d1 + b1c2 − c1b2) k

An Alternate Representation for Quaternions

The expression for multiplication of quaternions, given above, is quite complex – and results in even

worse complexity for the division and inverse formulas. The quaternions can be written in an different form
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– one which involves vectors – which dramatically simplifies the formulas. These expressions have become

the preferred form for representing quaternions.

In this form, the quaternionq = a + bi + cj + dk is written as

(a,~v)

where~v is the vector< b, c, d >.

We can rewrite the addition formula for two quaternionsq1 = (a1, ~v1) andq2 = (a2, ~v2) as

q1 + q2 = (a1 + a2, ~v1 + ~v2)

and the product formula as

q1q2 = (a1a2 − ~v1 · ~v2, a1~v2 + a2~v1 + ~v1 × ~v2)

With some algebraic manipulation, these formulas can be shown to be identical with those of thei, j,

k representation. We note that the quaternions of the form(a,< 0, 0, 0 >) can be associated with the real

numbers, and the quaternions of the form(a,< b, 0, 0 >) can be associated with the complex numbers.

Properties of Quaternions

With this new representation, it is straightforward to develop a complete set of properties of quaternions.

Given the quaternionsq = (a,~v), q1 = (a1, ~v1), andq2 = (a2, ~v2), we can verify the following

properties.

• Addition – The sum ofq1 andq2 is

q1 + q2 = (a1 + a2, ~v1 + ~v2)

• Negation – The additive inverse−q of q is a

−q = (−a,−~v)
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• Subtraction – The difference ofq1 andq2 is

q1 − q2 = q1 + (−q2) = (a1 − a2, ~v1 − ~v2)

• Multiplication – The product ofq1 andq2 is

q1q2 = (a1a2 − ~v1 · ~v2, a1~v2 + a2~v1 + ~v1 × ~v2)

• Identity – The multiplicative identity is(1,~0). This can be directly checked by

(a,~v)(1,~0) = (a − ~v ·~0, a~0 + 1~v + ~v ×~0) = (a,~v)

(1,~0)(a,~v) = (a −~0 · ~v, 1~v + a~0 +~0 × ~v) = (a,~v)

• Multiplicative Inverse – The inverseq−1 of q = (a,~v) is given by

q−1 =
(

a

a2 + |~v|2
,

−~v

a2 + |~v|2

)
This can be checked easily once we calculate that

(a,~v)(a,−~v) = (a2 + ~v · ~v,−a~v + a~v + ~v × (−~v))

= a2 + |~v|2

and soqq−1 = q−1q = (1,~0).

• Division – The quotient ofq1 andq2 is

q1

q2
= q1q

−1
2

Notation

Quaternions of the form(a,~0) are normally denoted in their real number form – asa. this allows a scalar

multiplication property to be given by
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• Scalar Multiplication – Ifc is a scalar, then

cq = (c,~0)q

= (c,~0)(a,~v)

= (ca −~0 · ~v, c~v + a~0 +~0 × ~v)

= (ca, c~v)

It also allows us to simplify some expressions. For example, the expression for the multiplicative inverse

can now be written

• Multiplicative Inverse – The inverseq−1 of q = (a,~v) is given by

q−1 =
(a,−~v)
a2 + |~v|2

This also allows us to write the multiplicative identity of the quaternions as1 instead of(1,~0), and the

additive identity as0.

The Quaternions are not Commutative under Multiplication

Whereas we can add, subtract, multiply and divide quaternions, we must always be aware of the order

in which these operations are made. This is becausequaternions do not commute under multiplication–

in generalq1q2 6= q2q1.

To give an example of this consider the two quaternionsq1 = (1, < 1, 0, 0 >) andq2 = (2, < 0, 1, 0 >).

Multiplying these we obtain

q1q2 = (2 − 0, < 0, 1, 0 > +2 < 1, 0, 0 > + < 0, 0, 1 >) = (2, < 2, 1, 1 >)

or

q2q1 = (2 − 0, 2 < 1, 0, 0 > + < 0, 1, 0 > + < 0, 0,−1 >) = (2, < 2, 1,−1 >)

and they are not equal. This is because the vector cross products give different results depending on the

order of the vectors – in general,~v1 × ~v2 6= ~v2 × ~v1.

5



Length of a Quaternion, Unit Quaternions

We define the length of a quaternionq = (a,~v) to be

|q| =
√

a2 + |~v|2

where|~v| is the length of the vector~v. The unit quaternions are those that have length one.
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